Wednesday, October 19, 2011

Alien Life, We are Getting Closer Than Ever To Disclosure

New missions and discoveries on Earth, within our solar system and beyond are bringing us closer than ever to finding alien life on other planets

Articles such as this are informative but they also act as a reasonably good barometer on how close we are getting to disclosure. I feel that there is no doubt that our scientist will announce on pretty short notice that microbial life has been found in the universe. This will be the key that will unlock the door to much greater and meaningful flow of information.

“The genesis of life is as inevitable as the formation of atoms,” is how Andrei Finkelstein, the director of the Russian Academy of Sciences’s Applied Astronomy Institute, explained his ambitious timeline for finding alien life to an audience of astrobiologists and reporters in June. “There is life on other planets, and we will find it in 20 years."

But Tullis Onstott, a geologist at Princeton University who specializes in astrobiology, makes an even more ambitious prediction. “In the next 15 years,” he says, “we will likely discover life on an exoplanet near us.” Scientists have long predicted the discovery of extraterrestrial life, but Finkelstein and Onstott have good reason to be optimistic. Researchers are devoting more resources to the search for alien life than ever before, and they are getting some enticing results.

Since 1996, when NASA created its current astrobiology program, the agency has increased the annual budget from $10 million to $55 million. In that same period, the overall number of astrobiologists increased to a few thousand worldwide, and the number of papers they published rose from around 40 to nearly 3,000. Informed by such work, NASA has planned a full slate of search-for-life missions for the next two decades. This year, scientists using data from the Kepler space telescope have found evidence of more than 1,200 new exoplanets, 54 of them potentially habitable, and this fall, NASA will send a rover to Mars to search for the chemical signatures of life. In 2018, it plans to send another rover to Mars—one that will eventually provide soil samples that return to Earth.

Scientists have also outlined a two-craft mission to Jupiter’s icy moon Europa, and they are designing new telescopes, more sophisticated than Kepler, that could look into distant star systems to spot signs of life directly. What we’ll find remains a mystery, of course, but the way we’ll find it is well mapped out.

The first work starts here at home. By studying life that exists in extreme environments, scientists are learning a great deal about how and where to look for it on other planets. Researchers have found microbes in volcanic calderas, deep ocean vents and arsenic-laden lakes [see “Scientist in a Strange Land,”], and the existence of these “extremophile” life-forms has redefined the concept of habitability on this planet and elsewhere.

Alien Ground: Scientists could use microbes found in Vostok, Whillans and ellsworth, three subglacial lakes in Antarctica, to create DNA probes and biosignature models to be used by future search-for-life missions in our solar system Kevin Hand

Alfonso Davila, a research scientist at the NASA Ames Research Center, was part of a team that found microorganisms living in salt crystals in Chile’s ultradry Atacama Desert. The organisms managed to survive on atmospheric water vapor, Davila says, so similar organisms might also survive in salt deposits on Mars, which has enough atmospheric water vapor to form frost. Microbiologist Lyle Whyte of McGill University in Montreal found bacteria living at subzero temperatures in a methane-rich spring on Axel Heiberg Island in the Canadian Arctic Ocean. Similar life-forms could also be the source of the recently discovered methane plumes on Mars. “There could be microorganisms in the deep subsurface of Mars that produce the gas,” Whyte says. And this winter, scientists will get a look at how life might exist on the ice moons of Jupiter. Scientists have yet to tap any of the more than 150 lakes sealed beneath the Antarctic ice cap, but starting in December, research teams will complete three drilling projects in as many years.

Researchers from the Arctic and Antarctic Research Institute in Russia will reach water first when they drill into Lake Vostok, a body of water roughly the size of Lake Ontario that has been isolated for as long as 20 million years under an ice cap that is now well over two miles thick. Because the water beneath the lake is sealed off, devoid of light and extremely cold, it is an unusually close analogue to Europa, where a thick layer of ice blocks sunlight from reaching a suspected subsurface ocean. “Life in Antarctic subglacial systems will allow us to focus our search for life in Europa’s ocean,” says John Priscu, a microbiologist at Montana State University who in 2014 will melt through half a mile of ice to reach Lake Whillans, 650 miles west of Lake Vostok. “It will allow us to design DNA probes and look for biosignatures in Europa’s ocean.”

The challenge is to get samples without disturbing or contaminating the delicate system. Last February, the Russian team drilled to within 100 feet of the lake water but then had to stop for winter. When work resumes in the austral summer, researchers will switch from a mechanical corer to a heated drill bit to melt through the last 30 feet of ice. The lake water, slowed by an expandable borehole plug on the end of the drill, will rise 100 feet up the hole and freeze. In December 2012, the researchers will return to core and sample it. The samples should generate many clues as to what kind of life can survive in such conditions, even as researchers learn how to better gather such samples in more-difficult conditions. “If there is any chance that Europa’s ice might be thin enough in places for humans to drill or melt into it,” says Robert Pappalardo, an astrobiologist at NASA’s Jet Propulsion Laboratory who is heading up the science team on the future mission to Europa, “perhaps Vostok and other subglacial lakes can teach us techniques for doing so."

Souce: Popsci
Related Posts Plugin for WordPress, Blogger...

Subscribe to Educating Humanity

Enter your email address:

Delivered by FeedBurner